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Abstract. In this paper the susceptibility of a Kondo system in a fatrly wide temperature
region is calculated in the first-harmonic approximation in a functional integral approach.
The comparison with the value obtained by renormalization group theory shows that in this
region the two results agree quite well. The expansion of the partition function with infinite
independent harmonics for the Anderson model is studied. Some symmetry relations are
generalized. It is a challenging problem to develop a functional integral approach including
diagram analysis, mixed-mode effects and some exact relations in the Anderson system
proved in a functional integral approach. These topics will be discussed in a subsequent

paper.

1. Introduction

There has been much interest recently in the valence fluctuation phenomena which are
observed in some metallicrare-earth compounds [1, 2]. The 4f level of the rare-earth ions
may be shifted from magnetic to non-magnetic behaviour under hydrostatic pressure. At
high temperatures the magnetic susceptibility contains a fraction of the Curie sus-
ceptibility. At low temperatures no magnetic ordering has been observed and the
susceptibility tends to be constant. In view of a number of measurements 1, 2], it is now
apparent that rare-earth ions, e.g. Sm and Ce, have mixed valence states, which consist
of a magnetic and a non-magnetic configuration. Several theoretical models have been
proposed to describe such a phenomenon [3].

The asymmetric Anderson model gives, in principle, a valid description of a dilute
fluctuating-valence system. A Hartree-Fock approximaticn or mean-field theory has
been used to study this model [4-6]. Krishna-Murthy er af [7] have applied the renor-
malization group approach to study the single-impurity asymmetric Anderson model.
Their numerical results on the impurity susceptibility in their well-known papers [7]
show that this model shares many features of the magnetic susceptibilities in mixed-
valence compounds. The present author and Ting [8] have studied the same problem
with the functional integral approach (f1a). Using number theory and cancelling the
singularities in the integrands, the susceptibility in a fairly wide range of temperatures
can be calculated and the results agree quite well with those of the renormalization group
calculation of Krishna-Murthy er al for g, the f level lying above the Fermi level.

t Permanent address: Physics Department, Fudan University, Shanghai, 200433, People’s Republic of Chipa.
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Furthermore we also calculate the f-electron occupation number 7; as a function of
temperature and the f-electron energy level, the results show that /7, depends on %, when
%,is close to the Fermi level. Then one can give a physical explanation for the fluctuating-
valence phenomenon.

The symmetric Anderson model can also be used to study the Kondo effect [4.7, 9}
and the problem related to magnetic impurities in metals. Although the Anderson model
and the Kondo problem have been excellently studied by the renormalization group
approach [7] and the Bethe ansatz [10, 11], it is still interesting to develop the study of
the Fia further. Because a theorem in section 2 shows that a fairly general class of
problems in quantum statistics can be formulated by the FiA, jt has a sound foundation
and a hopeful future. From a practical point of view, it can give an exact formal solution
for the Anderson model and can realize a suitable concrete calculation [8, 12, 14-16].
Some difficulties have been overcome continuously. In section 2 a functional integral
formulation for the general problem in quantum statistics and some numerical cal-
culations in the first order harmonic approximation (FHA) for the Anderson model are
reviewed. In section 3 an expansion with infinite independent harmonics is studied.
Some numerical results from the F1a are obtained for the Kondo system and compared
with those from the renormalization group approach. In a subsequent paper we shall
discuss the theoretical framework of the FiA without divergence, the Feynman diagram
analysisin the F1a with complex representation, and some exact relationsin the Anderson
system proved by the riA. The concluding remarks are given in section 4.

2. Functional integral formulation in guantum statistics

It is interesting to transform quantum statistical problems into ideal gas problems by the
FIA.

Theorem. A general statistical equilibrium problem can be transformed into a prob-
lem of an ideal gas moving in a (complex) time-dependent external field. The price that
one needs to pay is introducing a functional integral.

Proof. It is obvious the Hamiltonian of many-body systems with potential interaction
can be written as

H=Hy+ Hl, (2.1)
where
N 1 \
:nt =5y 2 2 2 U(q)é.;’ +q‘o’az—q,oakﬁak'0" (22)
2V q ke kot
Hy= 2 (I + 264 )tk (2.3)
kk'e

and Uy is the potential at the origin.
1 {nt = E "aq éq
9

where
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i ug .,
= Bq = % W al-:-i-q o@io- (24)
Let us follow the well-known works [14-18]. Introduce

A =J:g exp(iQ,7) A (r)dv B =(kT)!

# . 2
BY =f exp(iQ, 1) B, (7)dz Q, =-B-,u

0
and the Feynman-Dyson expansion. Noticing that A%, BY and H, commute under the
time-ordering operator T and the Stratonowch—Hubbard [17, 18} 1dent.1ty is still valid
even when A, and B are not Hermitian, we obtain for the expression of partition
function

s=[ f Il H dxj dyg exp(~|z4)

—x § R=E"F

(2.5)

X Tr[exp(—ﬁﬁo) Texp(-— zs 2 AkzTH — Bg(z;")*)] (2.6)

B
where
zfh =x4 + iy, 2.7
Letting
z (r) = > z4 exp(—iQ,7) (2.8)
.u= —
and transforming (2.6) into the time representation, we have
: 8
== JDz exp(—ff > lzq(r)lz) E,(2) (2.9)
Bly g
where
N B
B, (2) =Tr[Texp(——f ﬁi(r)dr)] (2.10)
0
Hi(x) = Ho + 2 2 Col0) 2 610,00y (7) (2.11)
q ko
Co(2) = Vaf2BV[VU(g) z,(z) — VU(=q) %,(7)] (2.12)
Dz=]I Il dx#dy: (2.13)
g p=-=

Equations (2.9) and (2.10) contain the theorem. The derivative of In E, with respect to
A can be expressed as follows:

a(ln "‘1) - jﬁ 1) drTr[Texp( f Hy(¢)ar’ ) 2 4ty 0(7)“’“’(:)]

= —%‘,fo C,(1) dr<% a,:'ﬂ'a(r)ak‘,(r)). (2.14)
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Here {. . .) means the average being taken over an ensemble with the Hamiltonian 4,
and can be obtained by the Green function theory. The definition of the temperature
Green function of the operators 4 and B in the generalized Heisenberg picture is

(ADB(TY) = Tilp, TA(r)B(x")] (2.15)
where
O(1) = s (7)Os(7); s(t) = T"'e:xp(—J-r H,(t" dr') (2.16)
0

and the density matrix is given by
6 =s(B)/E,. 2.17
As an important example, one can consider the Anderson model:
H= E Erofig + 2 Efty, + 2 (kaéltagla + CC) -+ Him
ko o ko

Hiy = Ultyy iy (2.18)

In this case, if we introduce Uy and ¢, q(r) and Bq(r) in equation (2.5) are replaced by
VUR 1+ and VU# |» respectively. The corresponding problem of an ideal gas in a
complex external field can be solved exactly {12] and the formal solution of the partition
function E is obtained [12, 16]

=Ey f f (ﬁ dxudyyexp(—ﬂrlzulz))

“:—-&

I.'ll

xexp(ETr[in(f VoGY )A]) (2.19)

where
(A)am = expli®,0) 8,
(V)m = BCY-m
C?(t) = Vur/lox(z) + iy(r)]
(G¥)nm = O/ Bli0n — €10 — Z,] 7
=, = —i| VEN(0) sm(co,,)
T=a[VIN{@Q)  6=p8T/x

where N(0) and | V2| are the density of states and the average of the interaction matrix
element square at the Fermi surface and I' is the width of the £ level.

Ey-o = Trlexp(—BH,)]

(2.20)

= Epand exP[—Z %‘1 — In(27) +21n
[

ﬁsla)
F(Z *3 2 + n

}

In studies of the F1a, many well-known physicists have made great contributions to
studies of the Anderson system. In 1965, Mithlschlegel [14] pointed out that the gen-
eralized Hartree—Fock approximation (i.e. the static approximation) can be obtained
by only keeping ¢ = 0 and is exact in high-temperature region or for V— 0. Wang et al
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[15] discussed the FHA and RpA' in the real representation; Hamann [12] gave the formal
solution (2,19). The complex representation of the FIA was developed by Miihlschlegel
[14], Hamann [12] and Amit and Keiter{16]. The superiorities of complex representation
was emphasized by Amit and Keiter [16}. In particular, for a zero magnetic field and the
symmetric Anderson model, the partition function maintains the following symmetry
relation:

E(U) = exp(BU/2) E(~U) (2.21)

whichis easily overlooked in the approximation to areal representation [ 16). In addition,
the FHa is studied and some numerical calculations of susceptibility in the high-tem-
perature range for the symmetric case are given in the FHA. In our paper [8], we have
applied the F1a to discuss the susceptibility x and the f-electron occupation number for
the asymmetric case and to obtain the following symmetry relations, for all Uand T:

x(Xo) = x(1 — Xo} Xo = —&/U (2.22)
ﬁ[(l - Xu) =72 — ﬁf(Xg) (223)

Equation (2.22) is consistent with that of the renormalization group approach; equation
(2.23) is new. Overcoming a series of difficulties, introducing an integration method in
number theory and cancelling the divergence of integrands at the boundaries, ¥ and 7,
for the asymmetric Anderson system have been calculated in a fairly wide temperature
range and compared with that of the renormalization group approach.

In order to separate the static approximation from other effects, let

Ve=Vg+ Ve (2.24)
where

V8= (V)b Ve = Vil = 8. (2.25)
One obtains [16]

2=f[ amezy) | dlimz)exp(-l2; )

X ];I [T(1 + A°)T(1 + B°)]™? (H J»w Jm dx, dy, exp(—x|z, Ez))

p#E0 Y o Y e
X exp(z Tr{In(f — 17"@3)]) (2.26)
where
() =6-vp=apmee -8 a=zrup (.27
o (Yin+1+A9) (n=0)
(Go)rm’ = (6"m/2m){1/(n _ B") (n < _1) (2.28)

f= Epua(2m)? exp[—(8/2)(&;y + &, ~ U/2) (2.29)
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V§ = VapU(of, + iyo)- ) (2.30)
Denoting
Q°=I-V°Gg o (@2.31)
in the FHA, only terms with u = 0, £1 are considered:
exp(z Tr(in Q")) = det[DY] (2.32)
where
1 m=n
(D) _V;G(‘; g;i) Z ) : J_r : (2.33)
0 otherwise

and det(D{) can be calculated by the Bessel function theory [16, 19]. In this approxi-
mation the susceptibility y and occupation number 7, of f electrons are expressed by [16]

x = (B/8)(gus)(x; — x3)%) (2.34)
Ay =2 ((x, + x2)) (2.35)
where
(A)séf f dx, dxy B(x,, x,)A (2.36)
=70 ‘o
g = J’l jl de de é(xl,xz) (2.37)
0 "0

0%

= _ (Yo8)*™
By, x2) = ,z’o I(m+1+6)
X exp{.ﬂ.'ngé[(% —XoYxy +x2 = 1) —(x, — 8(x; — H]}

YD = U/n‘I” XU = “’E[/U. (238)

40~ [sin(mx, ) sin(omx, )]+ 2m~1

Some misprints in these formulae in [8] have been corrected.

In the fluctuating-valence problem, Y is very large (possibly 10%), the integrands
vary rapidly and change in the range of exp(=100), and the coefficients in equation
(2.38) change in the range of exp(+180). The double integrals and the sum in equation
(2.38) converge very slowly. One meets a series of serious difficulties and much com-
puting time is needed. We have adopted a powerful multidimensional integration
method developed by Hua and Wang[20] on the basis of number theory which overcomes
a series of difficulties. In a rather wide temperature range we calculate the susceptibility
x and compare it with that of the renormalization group theory in [7]. For example,
some comparisons are shown in figures 4-8 of [8]. Moreover, we also calculate the plots
of /7; as a function of X, = —£,/U. These relations show that 7, changes rapidly in the
vicinities of X = 0 or 1. So it is also explained why the number of valence electrons is
an integer in the usual cases.



Functional integral approach in quantum statistics: I 4395

3. Expansion with infinite independent harmonics and numerical results for the Kondo
system

One of the important topics in [16] is the superiority of complex representation in the
FIA. In particular, it maintains the symmetry relation (2.21) in the FHA. We have proved
the symmetry relations (2.22) and (2.23). In this section we shall discuss their validity in
higher-order approximations.

An infinite independent harmonic approximation means that, in the expansion
(2.26), only the terms with Z, and Z_, are considered and all the other terms with a
mixedmode,e.g. Z,,,2,,,Z-,,-0,, - - - are neglected. This correspondsto the following
approximation, suggested in [16]:

exp[Tr(ln Q9)] =1 + i [det(D?) —1). (3.1)

Using the recursion relation for det(D ), we obtain
v—1
1
det(D?) = I1 (é)r[m (A7 +1+ K)]l"[ B rv-B S L
k=0 \V v mp=0 mk
(—1)y"[6952, /(2miv)2 ™I{6/v + 2m,]
X Ty + (U/9)(A° + 1+ O)JTTmg + (/) (B° + v — K)IT[0/v + my + 1]°
(3.2)
Substituting (3.2) into (3.1) and (2.26), after some lengthy calculations and carrying out

all the infinite dimensional integral except v = 0, we obtain the formula for the partition
function E, according to the following formulae:

xX= kTﬁz In T/B?fz = X band (3.3)
_ 8(In )
= kT% ry— (3.4)

We obtain the expressions for the susceptibility ¥ and occupation number 7, for £
electrons. In order to save space, we omit the details and write the resultant expressions
directly-

(guB)z 12 r—1 o p-1
y=i3 ) j 2 (& - m)E, [ ag,dn, (3.5)
B, 4vtkT ) 1/2;; o k=0
12 2 1 v-1
=142 z j j E(;wm)wr_ldckdm (3.6)
where
=1 12 v-1
E- Ef [ = M atudn, | (3.7)
=1Y_1/2 -1/2 k=0
U 2m 6 2v
g, =f{2} by (45%2) Ir2(m + 1)5,,1,",(2::)2“-2;;-25(-;)
mit {mpey ’

! 2 cos(m )Pt 2 cos(amy) Pkt
Zo mT[8/v + my + 1JmpT[8/v + mf + 1]

|1::1|
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Figure 1. Semilogarithmic plots of kT /{gug)? versus kT/D for the symmetric Anderson
madel for ¥ = 12.665 (O, 0)and Y, = 1.0132 (A, @): O, A, results for [7]; 0, @, results of
Fla.

. =1

. =]
X exp(i > (1 +2%~ v}ty + = > (142K - v)m?k)
Y=o V=0 ,
1 r=1 1 p=1 - b ]
X exp("‘;ﬁgm gﬂ Er — ;ﬁé"n Eﬂ My — 5_2' Zz'. Ez‘lo nk) (3.8)

for m=2mk21-

According to equations (3.5)—(3.8), we conclude the following.

(i) The static approximation [14] and the FHA [8, 16] are special cases corresponding
tov = 0and v = 0.1, respectively.
(ii) For all T and Y, E, has the following symmetry relations:

B (Xo, Yo, {Sub, {mi}) = B, (Xo, Yo, {me}, {E:D) when H =0 (3.9a)
Ev(l HXO! Y09 {Ck}1 {nk})=E:(X0s Yﬂy{h;k}v {_nk}) forall H. (3‘9b)

Here one can see that in the complex representation it is easy to lose reality but we can
prove in general that in this kind of problem the imaginary parts of Z must be zero. Then
we have

Ev(l _'X()s YU: {':k}i {nk}) = EV(XD’ YO: {_ckh {—nk}) (3'10)

According to equations (3.5)-(3.10), we can prove the following properties.
In the infinite independent harmonic approximation, for all temperatures T and
Coulomb energy U, Anderson systems possess the following symmetry properties:

ﬁg(Yo,Xo':O.S):l (3-11)
X(Y(]a 1- XO) = x(YO': XD) (3'12)
(Yo, 1 — Xg) =2 — 7(Yy, Xp). (3.13)

The property in (3.11) has been proved previously only in mean-field theory [21, 22].



Functional integral approach in quantum statistics: 1 4397

The property in (3.12) is inconsistent with that of the renormalization group approach
[7). The property in (3.13) is new. These identities are valid not only in the FHA but also
in the infinite independent harmonic approximation.

Now let us consider the Kondo system, or the symmetric Anderson model, which is
one of the important cases. Krishna-Murthy et af [7] studied it excellently with the
renormalization group approach. Amit and Keiter [16] studied the same problem by F1a
in the high-temperature region. Because the temperature region is too narrow (4 =
0-6), the susceptibility curve corresponds to the horizontal part in figure 1 and cannot
display the curved part: so the comparison between two approaches cannot be realized.

We try to make a serious comparison between the two approaches in the symmetric
Anderson system and need to perform a calculation of the susceptibility over a fairly
wide temperature region (8 = 0~10°%). Then we meet with many serious difficulties.

() The integrands change very rapidly and on a large scale. When the variable
changes from 0 to 1, sometimes the integrands change from exp(—10°) to exp(10°). The
way in which these integrands can be handled and use them in a computer is a rather
difficult problem.

(b) When & is very large, the series converges very slowly. Sometimes one needs
thousands of terms with double integrals. Much computing time is necessary. .

{(¢) When & is very large, a large number of coefficients need to be calculated. It is
well known that in ordinary computers, for example, I'*(25} will overflow but, for ¥, =

12, one needs I'*(1000) and large (Y,6)". We have met the first of these difficulties
already in the fluctuating-valence problem [8]. The second and third are new.

After making great efforts for a long time, including introducing the integration
method based on number theory [20] and other measures, we have overcome all these
difficulties and performed the calculation of the susceptibility for f electrons in a fairly
wide temperature region. Both the numerical results of [7] and ours are demonstrated
in figure 1. The comparison shows that in this fairly wide temperature region our results
by the F1A agree quite well with those of Krishna-Murthy et al [7] obtained by the
renormalization group approach.
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