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Abstract. In this paper the susceptibility of a Kondo system in a fairly wide temperature 
region is calculated in the first-harmonic approximation in a functional integral approach. 
The comparison with the value obtained by renormalization group theory show that in this 
region the two results agree quite well. The expansion of the partition function with infinite 
independent harmonics for the Anderson model is studied. Some symmetry relations are 
generalized. It is a challenging problem to develop a functional integral approach including 
diagram analysis, mixed-mode effects and some exact relations in the Anderson system 
proved in a functional integral approach. These topia will be discussed in a subsequent 
paper. 

1. Introduction 

There has been much interest recently in the valence fluctuation phenomena which are 
observedinsome metallic rare-earth compounds [l, 21. The4f levelof the rare-earthions 
may be shiftedfrom magnetic to non-magnetic behaviour under hydrostatic pressure. At 
high temperatures the magnetic susceptibility contains a fraction of the Curie sus- 
ceptibility. At low temperatures no magnetic ordering has been observed and the 
susceptibility tends to be constant. In view of a number of measurements [l, 21, it is now 
apparent that rare-earth ions, e.g. Sm and Ce, have mixed valence states, which consist 
of a magnetic and a non-magnetic configuration. Several theoretical models have been 
proposed to describe such a phenomenon [3]. 

The asymmetric Anderson model gives, in principle, a valid description of a dilute 
fluctuating-valence system. A Hartree-Fock approximatien or mean-field theory has 
been used to study this model [4-61. Krishna-Murthy er al[7] have applied the renor- 
maliation group approach to study the single-impurity asymmetric Anderson model. 
Their numerical results on the impurity susceptibility in their well-known papers [7] 
show that this model shares many features of the magnetic susceptibilities in mixed- 
valence compounds. The present author and Ting [8] have studied the same problem 
with the functional integral approach (FIA). Using number theory and cancelling the 
singularities in the integrands, the susceptibility in a fairly wide range of temperatures 
can be calculated and the results agree quite well with those ofthe renormalization group 
calculation of Krishna-Murthy er al for E[, the f level lying above the Fermi level. 
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Furthermore we also calculate the f-electron occupation number r71 as a function of 
temperature and the f-electron energy level, the resultsshow that rildependson%, when 
%,isclose totheFermilevel. Thenonecangiveaphysicalexplanationforthefluctuating- 
valence phenomenon. 

The symmetric Anderson model can also be used to study the Kondo effect [4,7,9] 
and the problem relatedtomagneticimpuritiesinmetals. Although the Andersonmodel 
and the Kondo problem have been excellently studied by the renormalization group 
approach [7] and the Bethe ansah [lo, 111, it is still interesting to develop the study of 
the FIA further. Because a theorem in section 2 shows that a failly general class of 
problems in quantum statistics can be formulated by the FIA, it has a sound foundation 
and a hopeful future. From a practical point of view, it can give an exact formal solution 
for the Anderson model and can realize a suitable concrete calculation [8,12,14-161. 
Some difficulties have been overcome continuously. In section 2 a functional integral 
formulation for the general problem in quantum statistics and some numerical cal- 
culations in the first order harmonic approximation (FHA) for the Anderson model are 
reviewed. In section 3 an expansion with infinite independent harmonics is studied. 
Some numerical results from the FIA are obtained for the Kondo system and compared 
with those from the renormalization group approach. In a subsequent paper we shall 
discuss the theoretical framework of the FIA without divergence, the Feynman diagram 
analysisin the FIA withcomplexrepresentation,andsome exact relationsin the Anderson 
system proved by the RA. The concluding remarks are given in section 4. 

2. Functional integral formulation in quantum statistics 

It is interesting to transform quantum statistical problems into ideal gas problems by the 
n A .  

Theorem. A general statistical equilibrium problem can be transformed into a prob- 
lem of an ideal gas moving in a (complex) time-dependent external field. The price that 
one needs to pay is introducing a functional integral. 

Proof. It isobvious the Hamiltonianofmany-body systems with potential interaction 
can be written as 

A=Ab+A[, (2.1) 

where 

and U. is the potential at the origin. 

where 
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(2.4) 

Let us follow the well-known works [14-181. Introduce 
B 

A :  =I, exp(iQ,z)A,(z)dr /3 = (kT)-' 

2R 
Q =-p p / 3  

B;  = [ exp(i8,s) &,(r) d z  

and the Feynman-Dyson expansion. Noticing that A ; ,  E;  and fi,, commute under the 
time-ordering operator T and the Stratonovich-Hubbard [17,18] identity is still valid 
even when A, and B9 are not Hermitian, we obtain for the expression of partition 
function 

exp(-/3fio) f e x p  

where 
z: = x ;  + iy:. 

Letting 
L 

zq(z) = E 2; exp-iQ,r) 
,=-e 

and transforming (2.6) into the time representation, we have 

where 
S,(z) = T r [ f e x p ( - l  B f i , ( r )dr)]  

0 

DD 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Equations (2.9) and (2.10) contain the theorem. The derivative of In EA with respect to 
A can be expressed as follows: 

(2.14) 
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Here (, , .)means the average being taken over an ensemble with the Hamiltonian 
and can be obtained by the Green function theory. The definition of the temperature 
Green function of the operators A and b in the generalized Heisenberg picture is 

((&z)&s'))) = Tr[p~f~(a)B(z')] (2.15) 
where 

b ( z )  = s-'(z)&(s);s(r) = f e x p (  -( A,(z')dr') 

and the density matrix is given by 
p = s(j3)/E*. 

(2.16) 

(2.17) 

As an important example, one can consider the Anderson model: 

d b h k g  f €!ohlo -k 2 ( v k 1 ~ ~ 0 6 1 0  + Cc) + Ai., 
ko D k o  

A,., = UhIT 211. (2.18) 

In this case, if we introduce Uoand q, &r) and B4(z)  in equation (2.5) are replaced by 
d 6 h l t  and f l f i ! ~ ,  respectively.~The corresponding problem of an ideal gas in a 
complex external field can be solved exactly [ 121 and the formal solution of the partition 
function S is obtained 112,161 

Z = Eu=o 1- . . . 1- ( I dx, dy, exp(-nIz,l')) -- _- w = - =  

where 

(2.19) 

(2.20) 

where N(0)  and I r"I are the density of states and the average of the interaction matrix 
element square at the Fermi surface and r is the width of the f level. 

Su=o = Tr[exp( -BfidI - 

In studies of the FIA, many well-known physicists have made great contributions to 
studies of the Anderson system. In 1965, Miihlschlegel[14] pointed out that the gen- 
eralized Hartree-Fock approximation (i.e. the static approximation) can be obtained 
by only keeping p = 0 and is exact in high-temperature region or for V - t  0. Wang ern1 
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[U] discussed the FHA and RPA' in the real representation; Hamann [12] gave the formal 
solution (2.19). The complex representation of the FIA was developed by Miihlscblegel 
[14], Hamann 1121 and Amit and Keiter[l6]. Thesuperioritiesofcomplexrepresentation 
was emphasized by Amit and Keiter [16]. In particular, for a zero magnetic field and the 
symmetric Anderson model, the partition function maintains the following symmetry 
relation: 

%(U) = exp(pu/z)s(-U) (2.21) 

whichiseasilyoverlookedinthe approximation to arealrepresentation [16]. Inaddition, 
the FHA is studied and some numerical calculations of susceptibility in the high-tem- 
perature range for the symmetric case are given in the FHA. In our paper [8], we have 
applied the FIA to discuss the susceptibility x and the f-electron occupation number for 
the asymmetric case and to obtain the following symmetry relations, for all U and T: 

X(Xd = x u  - XO) x, = - q / U  (2.22) 

nl(1 - X , )  = 2 - n/(x,). (2.23) 

Equation (2.22) is consistent with that of the renormalization group approach; equation 
(2.23) is new. Overcoming a series of difficulties, introducing an integration method in 
number theory and cancelling the divergence of integrands at the boundaries, x and El 
for the asymme&ic Anderson system have been calculated in a fairly wide temperature 
range and compared with that of the renormalization group approach. 

In order to separate the static approximation from other effects, let 

p a  = v;  + v a  (2.24) 

where 

Pg = (vqn"6"", = v:",(l - 6""s). (2.25) 

One obtains [16] 

E =fl:md(Rei?o) 1- d ( I m I , ) e x p ( - ~ ~ i ? o ~ 2 )  
-m 

x I7 [r(l + A')T(l + Bo)]-' (n 1' dx, dy, exp(-x/z,(f)) 
0 ,+o -e -m 

x exp xTTr[ln(f- l7'G;)l) 
(o 

(2.26) 

where 

(;I) = (6 - 1)/2 7 (l;zni)(pE,s - vg) ElO = El0 + u/z. (2.27) 

l/(n + 1 + A o )  (n 0) 
l/(n - B O )  (n  < -1) 

(2.28) 
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V z  = v ~ $ E ( ~ ~  + iyo). 

p o  f - V o G g  
Denoting 

in the FHA, only terms with p = 0, “1 are considered: 

e x p ( x  Tr(ln (5.)) Î det[Df] 
0 

where 

m = n  

m = n + v  
m = n - v  

otherwise 

(DP),. = 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

and det(Df) can be calculated by the Bessel function theory [16,19]. In this approxi- 
mation the susceptibilityx and occupation number E, off electrons are expressed by [ 161 

(2.34) 

(2.35) 
x = ( B / ~ ) ( ~ P B ) ~ ( ( ~ I  - x d Z }  

ti, = 2 - ((xl + x 2 ) )  

where 

3 = I,’ I,’ dx, dx, ~ ( x l , x 2 )  

(2.36) 

(2.37) 

x exp(n2Y06[(4 - Xo)(xl + 12 - 1) - ( x i  - ~ ) ( x z  - f)]} 
Yo = u/.r x, = --€//U. (2.38) 

Some misprints in these formulae in [SI have been corrected. 
In the fluctuating-valence problem, Yo is very large (possibly loz), the integrands 

vary rapidly and change in the range of exp(t100), and the coefficients in equation 
(2.38) change in the range of exp(+ 180). The double integrals and the sum in equation 
(2.38) converge very slowly. One meets a series of serious difficulties and much com- 
puting time is needed. We have adopted a powerful multidimensional integration 
methoddeveloped by Huaand Wangl201onthe basisofnumbertheory whichovercomes 
aseriesof difiiculties. In a rather wide temperature range we calculate the susceptibility 
x and compare it with that of the renormalization group theory in [7]. For example, 
some comparisons are shown in figures 4-8 of [PI. Moreover, we also calculate the plots 
of El as a function of X ,  = --E,/U. These relations show that Er changes rapidly in the 
vicinities of X ,  = 0 or 1. So it is also explained why the number of valence electrons is 
an integer in the usual cases. 
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3. Expansion with infinite independent harmonics and numerical results for the Kondo 
system 

One of the important topics in [16] is the superiority of complex representation in the 
FIA. In particular, it maintains the symmetry relation (2.21) in the FHA. We have proved 
the symmetry relations (2.22) and (2.23). In this section we shall discuss their validity in 
higher-order approximations. 

An infinite independent harmonic approximation means that, in the expansion 
( 2 2 4 ,  only the terms with Z ,  and 2-, are considered and all the other terms with a 
mixedmode,e.g. Z , ,  , Z . ~ , Z - ~ ~  -”*, . . . areneglected.Thiscorrespondstothefollowing 
approximation, suggested in [16]: 

m 

exp[Tr(ln Q“)] = 1 + x [det(D:) - 11. (3.1) 
“ = I  

Using the recursion relation for det(D;), we obtain 

( - i ) m , [ i i ~ i i ~ 7 , / ( 2 n i ~ ) 2 ] m r r [ d / ~  + 2mk] 
X 

r[mk + (l/V)(A‘ + 1 k)]r[mk + (l /V)(B‘ U - k ) ] r [ 6 / ~  f mk f 11’ 
(3.2) 

Substituting (3.2) into (3.1) and (2.26), after some lengthy calculations and carrying out 
all the infinite dimensional integral except v = 0, we obtain the formula for the partition 
function E, according to the following formulae: 

x = k T a 2  In =/ax2 - xband (3.3) 

(3.4) 

We obtain the expressions for the susceptibility x and occupation number el for f 
electrons. In order to save space, we omit the details and write the resultant expressions 
directly: 

where 

(3.7) 
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Figure 1. Semilogarithmic plots of kTx/(gps)' versus kTID for the symmetric Anderson 
modelfor Yo= 12.665(0,0)and Yo= 1.0132(A.m): 0, A,resultsfor[7];o,m,resultsof 
M A .  

. .  
for m = mk 3 1 - 

k = O  ~ 

According to equations (3.5)-(3.8), we conclude the following. 

to Y = Oand v = 0.1, respectively. 

ED(XO, yO,{ck},{qk>) =ss,(xO, YO,{qk},{ck}) when H = 0 (3.9~) 

Ev(1 -xO, YO,{ck}r{qk})=E:(XO, y O ? { - c k } ? { - q k } )  for all U. (3.9b) 
Here one can see that in the complex representation it is,easy to lose reality but we can 
prove in general that in this kind of problem the imaginary parts of E must be zero. Then 
we have 

-xO? YO,{ck},{?k}) = Ev(xO> yO?{-~k}*{-qk})~ (3.10) 

In the infinite independent harmonic approximation, for all temperatures T and 

iif(Yo,Xo = 0.5) = 1 (3.11) 

X(Yo,1 - XO) = X(Y0,XO) (3.12) 

iir(Y0,l -x~)=2-iqYo,x~). (3.13) 
The property in (3.11) has been proved previously only in mean-field theory [21,22]. 

(i) The static approximation [ 14) and the FHA [S, 161 are special cases corresponding 

(U) For all T and Yo, E. has the following symmetry relations: 

According to equations (3.5)-(3.10), we can prove the following properties. 

Coulomb energy U, Anderson systems possess the following symmetry properties: 
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The property in (3.12) is inconsistent with that of the renoimalization group approach 
171. The property in (3.13) is new. These identities are valid not only in the FHA but also 
in the infinite independent harmonic approximation. 

Now let us consider the Kondo system, or the symmetric Anderson model, which is 
one of the important cases. Krishna-Murthy et a1 [7] studied it excellently with the 
renormalization group approach. Amit and Keiter [16] studied the same problem by FIA 
in the high-temperature region. Because the temperature region is too narrow (6 = 
M), the susceptibility curve corresponds to the horizontal part in figure 1 and cannot 
display the curved part: so the comparison between two approaches cannot be realized. 

We try to make a serious comparison between the two approaches in the symmetric 
Anderson system and need to perform a calculation of the susceptibility over a fairly 
wide temperature region (6 = &lo3). Then we meet with many serious difficulties. 

(a) The integrands change very rapidly and on a large scale. When the variable 
changes from 0 to 1, sometimes the integrands change from exp(-l@) to exp(l@). The 
way in which these integrands can be handled and use them in a computer is a rather 
difficult problem. 

(b) When 6 is very large, the series converges very slowly. Sometimes one needs 
thousands of terms with double integrals. Much computing time is necessary. 

(c) When 6 is very large, a large number of coefficients need to be calculated. It is 
well known that in ordinary computers, for example, rZ(25) will overflow but, for Yo = 
12, one needs P(lOO0) and large (Yo6)zm. We have met the first of these difficulties 
already in the fluctuating-valence problem [SI. The second and third are new. 

After making great efforts for a long time, including introducing the integration 
method based on number theory [20] and other measures, we have overcome all these 
difficulties and performed the calculation of the susceptibility for f electrons in a fairly 
wide temperature region. Both the numerical results of [7] and ours are demonstrated 
in figure 1. The comparison shows that in this fairly wide temperature region our results 
by the FIA agree quite well with those of Krishna-Murthy et al [7] obtained by the 
renormalization group approach. 
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